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Abstract We consider a nonlinear Neumann problem driven by the p-Laplacian
differential operator with a nonsmooth potential (hemivariational inequality). By
combining variational with degree theoretic techniques, we prove a multiplicity the-
orem. In the process, we also prove a result of independent interest relating W1,p

n and
C1

n local minimizers, of a nonsmooth locally Lipschitz functional.
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1 Introduction

Let Z ⊆ IRN be a bounded domain with a C2-boundary ∂Z. In this paper, we study the
following nonlinear Neumann problem with a nonsmooth potential (hemivariational
inequality):

−div(|Dx(z)|p−2Dx(z)) ∈ ∂j(z, x(z)), a.e. on Z,
∂x
∂np

= 0, on ∂Z, 2 ≤ p < +∞. (1)

Here j(z, x) is a measurable potential function on Z × IR, which is only locally Lips-
chitz and in general nonsmooth in the x ∈ IR variable. By ∂j(z, x) we denote the

G. Barletta (B)
Dipartimento Patrimonio Architettonico e Urbanistico, Facoltà di Architettura, Università di
Reggio Calabria, Salita Melissari, 89124 Reggio Calabria, Italy
e-mail: giuseppina.barletta@unirc.it

N. S. Papageorgiou
Departement of Mathematics, National Technical University, Zagrafou Campus, Athens 15780,
Greece
e-mail: npapg@math.ntua.gr



366 J Glob Optim (2007) 39:365–392

generalized subdifferential of the locally Lipschitz function x → j(z, x). Also ∂x
∂np

=
|Dx|p−2(Dx, n)IRN with n being the outward unit normal on ∂Z. Our goal is to prove
the existence of multiple nontrivial solutions for problem (1).

While for the Dirichlet problem of the p-Laplacian, there have been several mul-
tiplicity results, the case of the Neumann problem is lagging behind. Of the existing
works in the literature, the majority deal with problems in which the potential function
is smooth (i.e., j(z, ·) ∈ C1(IR)). We mention the papers of Anello [4] and Ricceri [27],
who for the case p ≥ 2 established the existence of infinitely many solutions for certain
nonlinear eigenvalue problems, using symmetry conditions on the nonlinearity. Bon-
anno and Candito [6] considered a problem similar to that of Ricceri [27] and using
a “three critical point” theorem of Ricceri [26], proved the existence of three solu-
tions for the nonlinear eigenvalue problem. Binding et al. [5], considered problems
in which the right-hand side nonlinearity is λa(z)|x|p−2x + b(z)|x|p∗−2x + h(z), with
a, b ∈ L∞(Z)+, h ∈ L∞(Z) and proved the existence of one or two positive solutions.
Faraci [13] and Wu and Tan [30], studied problems where p > N and exploited the fact
that in this case the Sobolev space W1,p(Z) is embedded compactly in C(Z). Problems
with a nonsmooth potential, were studied by Marano and Molica Bisci [24], Papageor-
giou and Smyrlis [25] and Filippakis et al. [14]. Marano and Molica Bisci [24] use the
Ambrosetti–Rabinowitz condition and the local linking theorem. Papageorgiou and
Smyrlis [25] and Filippakis et al. [14], imposing symmetry conditions on the potential,
prove the existence of infinitely many solutions. In all the above works (smooth and
nonsmooth alike), the nonlinearity (single-valued and multivalued), exhibits a sym-
metric behavior as we approach +∞ and −∞. This is no longer the case with our
work. The multivalued nonlinearity ∂j(z, x) is asymmetric near +∞ and −∞ and the

“generalized slope”
{

u
|x|p−2x

}
u∈∂j(z,x)

crosses the principal eigenvalue λ0 = 0 as we

move from −∞ to +∞. Moreover, our approach here is different from all the afore-
mentioned papers and it is based on a combination of variational and degree theoretic
techniques.

2 Mathematical background

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the duality
brackets for the pair (X∗, X). For a locally Lipschitz function ϕ: X → IR the gener-
alized directional derivative ϕ0(x; h) of ϕ at x ∈ X in the direction h ∈ X, is defined
by

ϕ0(x; h) = lim sup
x′ → x
λ ↓ 0

ϕ(x′ + λh)− ϕ(x′)
λ

.

It is easy to check that ϕ0(x; ·) is sublinear continuous. So from the Hahn–Banach
theorem it follows that ϕ0(x; ·) is the support function of a nonempty, w-compact,
convex set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x; h) ∀ h ∈ X} .

The multifunction ∂ϕ : X → 2X∗ \ {∅} is the generalized subdifferential of ϕ. If
ϕ ∈ C1(X), then it is locally Lipschitz and ∂ϕ(x) = {ϕ′(x)} for all x ∈ X. Also if
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ϕ: X → IR is continuous convex, then ϕ is locally Lipschitz and the generalized sub-
differential coincides with the subdifferential in the sense of convex analysis, defined
by

∂Cϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ(x + h)− ϕ(x) ∀ h ∈ X} .

A multifunction G: X → 2X∗ \ {∅} is said to be upper semicontinuous (u.s.c. for
short), if for every closed set C ⊆ X∗

G−(C) = {x ∈ X : G(x) ∩ C �= ∅}
is closed in X. We say that a multifunction G: X → 2X∗ \ {∅} belongs to the class (P)
if it is u.s.c., has closed and convex values and for every B ⊆ X bounded, the set

G(B) = ∪x∈BG(x)

is relatively compact in X∗.
If G: D ⊆ X → 2X∗ \ {∅} is an u.s.c. multifunction with closed and convex values, then
for every ε > 0, we can find a continuous map gε: D → X∗ such that

gε(x) ∈ G ((x + Bε) ∩ D))+ B∗
ε for all x ∈ D and gε(D) ⊆ conv G(D) .

Here Bε = {x ∈ X : ‖x‖ < ε} and B∗
ε = {x∗ ∈ X∗ : ‖x∗‖ < ε} (see Hu and

Papageorgiou [19], p. 106). Note that if G belongs to the class (P), then the continu-
ous approximate selector gε is a compact map.

Using the continuous approximate selector, we can define a degree map for cer-
tain multivalued perturbations of (S)+-operators. To this end, let X be a reflexive
Banach space. By the Troyanski renorming theorem (see for example Gasinski and
Papageorgiou [16], p. 911), we can equivalently renorm X so that both X and X∗ are
locally uniformly convex and have Fréchet differentiable norms. So in what follows,
we assume without loss of generality that both Banach spaces X and X∗ are locally
uniformly convex. Then the duality map of X, F: X → X∗ defined by

F(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 = ‖x∗‖2}
is a homeomorphism.

Let A: X → X∗ be a single-valued, nonlinear operator, which is defined on all of
X. We say that A is of type (S)+, if for every sequence {xn}n≥1 ⊆ X such that xn ⇀ x
in X and lim supn→+∞〈A(xn), xn − x〉 ≤ 0, one has xn → x in X.
Let U ⊆ X be a bounded open set and A: U → X∗ a bounded, demicontinuous oper-
ator of type (S)+. Let {Xα}α∈J be the collection of all finite dimensional subspaces of
X and let Aα be the Galerkin approximation of A with respect to Xα , that is

〈Aα(x), y〉Xα
= 〈A(x), y〉 for all x ∈ U ∩ Xα , for all y ∈ Xα .

Then for x∗ /∈ A(∂U), the degree map d(S)+(A, U, x∗) is defined by

d(S)+(A, U, x∗) = dB(Aα , U ∩ Xα , x∗)

for Xα large enough (in the sense of inclusion), where dB stands for the classical
Brouwer’s degree map. If X is a separable reflexive Banach space and the nonlinear
operator A is bounded (namely it maps bounded sets in X to bounded sets in X∗),
then we can use only a countable subfamily {Xn}n≥1 of {Xα}α∈J such that X = ∪n≥1Xn.
For further details on the degree map d(S)+ , we refer to Skrypnik [28] and Browder
[8].
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Suppose G : X → 2X∗ \ {∅} is a multifunction in the class (P). For every x∗ /∈
(A + G)(∂U), the degree map d̂(A + G, U, x∗), is defined by

d̂(A + G, U, x∗) = d(S)+(A + gε, U, x∗)

for ε > 0 small. Here gε : U → X∗ is the continuous ε-approximate selector of G as
described above. Note that gε is compact and so x → A(x) + gε(x) is of type (S)+.
More on this degree map, can be found in Hu and Papageorgiou [18] (see also Hu
and Papageorgiou [19], Sect. 4.4).
One of the fundamental properties of any degree map, is the “homotopy invariance”
property. So next we describe the admissible homotopies for the operator A and the
multifunction G.

Definition 2.1

(a) A one parameter family {At}t∈[0,1] of bounded operators from U into X∗, is said
to be an “(S)+-homotopy”, if for any {xn}n≥1 ⊆ U such that xn ⇀ x and for any
{tn}n≥1 ⊆ [0, 1] with tn → t, for which

lim sup
n→+∞

〈Atn(xn), xn − x〉 ≤ 0

we have xn → x in X and Atn(xn) ⇀ At(x) in X∗.
(b) A one parameter family {Gt}t∈[0,1] of multifunctions Gt : U → 2X∗ \ {∅} is said

to be a “homotopy of class (P)”, if (t, x) → Gt(x) is u.s.c. from [0, 1] × U into
2X∗ \ {∅}, for every (t, x) ∈ [0, 1] × U the set Gt(x) is closed, convex and

∪{Gt(x) : t ∈ [0, 1], x ∈ U}
is compact in X∗.

Then the homotopy invariance property for the degree map d̂, reads as follows:
“If {At}t∈[0,1] is an (S)+-homotopy, {Gt}t∈[0,1] is a homotopy of class (P) and x∗: [0, 1] →
X∗ is a continuous map such that

x∗
t /∈ (At + Gt)(∂U) for all t ∈ [0, 1],

then d̂(At + Gt, U, x∗
t ) is independent of t ∈ [0, 1].”

The two degree maps d(S)+ , d̂ have all the usual properties (namely homotopy
invariance, solution property, domain additivity, excision property). Note that in this
case the normalization property, has the form

d(S)+(F , U, x∗) = 1 for all x∗ ∈ F(U).
Here F: X → X∗ is the duality map of X, which is bounded and (S)+.

We denote by ‖ · ‖p the usual norm on Lp(Z) and by ‖ · ‖ that on W1,p(Z). Finally, we
recall some basic facts about the spectrum of the negative p-Laplacian with Neumann
boundary conditions. So let m ∈ L∞(Z)+, m �= 0 and consider the following nonlinear
weighted (with weight m) eigenvalue problem:

−div(|Dx(z)|p−2Dx(z)) = λ̂m(z)|x(z)|p−2x(z) a.e. on Z,
∂x
∂np

= 0 on ∂Z, 1 < p < +∞, λ̂ ∈ IR. (2)

A λ̂ ∈ IR for which problem (2) has a nontrivial solution, is said to be an eigenvalue
of (−�p, W1,p(Z), m) and the nontrivial solution is an eigenfunction corresponding to
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the eigenvalue λ̂. It is easy to see that a necessary condition for λ̂ to be an eigenvalue,
is that λ̂ ≥ 0. Moreover, zero is an eigenvalue with corresponding eigenspace IR (that
is the space of constant functions). This eigenvalue is also isolated and admits the
following variational characterization

0 = λ̂0(m) = inf

[
‖Dx‖p

p∫
Z m|x|pdz

: x ∈ W1,p(Z), x �= 0

]
. (3)

Clearly the constant functions realize the infimum in (3).
By the Liusternik–Schnirelmann theory, in addition to λ̂0(m) = 0, we have a whole

strictly increasing sequence {̂λk = λ̂k(m)}k≥0 ⊆ IR+ such that λ̂k → +∞ as k → +∞,
which are eigenvalues of (−�p, W1,p(Z), m). These are the so-called “variational
eigenvalues” of (−�p, W1,p(Z), m).

If p = 2 (linear eigenvalue problem), then the variational eigenvalues are all the
eigenvalues of (−�, H1(Z), m). If p �= 2 (nonlinear eigenvalue problem), we do not
know if this is so. However, since λ̂0 = 0 is isolated and the set σ(p, m) of all the
eigenvalues of (−�p, W1,p(Z), m) is closed, then

λ̂∗
1 = inf

[̂
λ : λ̂ ∈ σ(p, m), λ̂ > 0

] ∈ σ(p, m)

and λ̂∗
1 = λ̂1.

So the first two eigenvalues of (−�p, W1,p(Z), m) coincide with the first two variational
eigenvalues.

Let ϕm(x) =
∫

Z
m|x|pdz , ψm(x) =

∫

Z
m|x|pdz + ‖Dx‖p

p for all x ∈ W1,p(Z),

S(ψm) =
{

x ∈ W1,p(Z) : ψm(x) = 1
}

,

and Ak = {
C ⊆ S(ψm) : C is compact, symmetric and γ (C) ≥ k

}
.

Here by γ (·)we denote the Krasnoselskii genus (see Gasinski and Papageorgiou [16],
p. 679). We have

1

λ̂k(m)+ 1
= sup

C∈Ak

min
x∈C

ϕm(x) for all k ∈ {1, 2,. . .} . (4)

If m ≡ 1, then we write λk = λ̂k for all k ≥ 0.
Further details on these and related issues can be found in Lê [22] and in Gasinski
and Papageorgiou [16].

3 One positive solution

The hypothesis on the nonsmooth potential j(z, x) are the following:
H(j): j: Z × IR → IR is a function such that j(z, 0) = 0 a.e. on Z, ∂j(z, 0) ⊆ IR+ a.e. on
Z and

(1) for all x ∈ IR, z → j(z, x) is measurable;
(2) for almost all z ∈ Z, x → j(z, x) is locally Lipschitz;
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(3) for every r > 0, there exists ar ∈ L∞(Z)+ such that for almost all z ∈ Z, all
|x| ≤ r and all u ∈ ∂j(z, x), we have

|u| ≤ ar(z) ;

(4) there exists θ ∈ L∞(Z) such that θ(z) ≤ 0 a.e. on Z with strict inequality on a
set of positive measure and

lim sup
x→+∞

u

xp−1
≤ θ(z)

uniformly for almost all z ∈ Z and all u ∈ ∂j(z, x) and also there exist θ1, θ2 ∈
L∞(Z)+ such that 0 ≤ θ1(z) ≤ θ2(z) < λ1 a.e. on Z with the first inequality strict
on a set of positive measure and

θ1(z) ≤ lim inf
x→−∞

u
|x|p−2x

≤ lim sup
x→−∞

u
xp−2x

≤ θ2(z)

uniformly for almost all z ∈ Z and all u ∈ ∂j(z, x);
(5) there exist η1, η2 ∈ L∞(Z) such that

η1(z) ≤ η2(z) ≤ 0 a.e. on Z

with the second inequality strict on a set of positive measure and

η1(z) ≤ lim inf
x→0

u
|x|p−2x

≤ lim sup
x→0

u
|x|p−2x

≤ η2(z)

uniformly for almost all z ∈ Z and all u ∈ ∂j(z, x);
(6) there exist c0 > 0, c > 0 and M0 > 0 such that

∫

Z
j(z, c0)dz > 0 ,

−cxp−1 ≤ u for almost all z ∈ Z, all x ≥ 0 and all u ∈ ∂j(z, x)

and u ≤ 0 for almost all z ∈ Z, all x ≥ M0 and all u ∈ ∂j(z, x).

Remark 3.1 Clearly hypothesis H(j) (4) describes an asymmetric behavior of ∂j(z, ·)
at +∞ and at −∞. Near +∞ we have partial interaction (nonuniform nonresonance)

of the “generalized slope”
{

u
xp−1 : u ∈ ∂j(z, x)

}
with the principal eigenvalue λ0 = 0

from the left (i.e., from below), while near −∞ the “generalized slope” remains in
the spectral interval [λ0 = 0, λ1], with nonuniform nonresonance with respect to
λ0 = 0 and uniform nonresonance with respect to λ1. Near zero (see H(j) (5)), we

have a symmetric behavior of the generalized slope
{

u
|x|p−2x

: u ∈ ∂j(z, x)
}

. We have

nonuniform nonresonance with respect to the principal eigenvalue λ0 = 0. Observe
that on the negative semiaxis, as we move from −∞ to 0−, we cross the principal
eigenvalue λ0 = 0 (crossing nonlinearity).

A simple nonsmooth, locally Lipschitz potential function j(z, x) satisfying hypothesis
H(j), is the following:

j(z, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η(z)
p |x|p + θ(z)−η(z)

p + ln 2, if x < −1,

θ(z)
p |x|p + |x|p ln(1 + |x|), if |x| ≤ 1,

θ(z)
p |x|p + ln 2, x > 1,
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where θ(z) ≤ 0 ≤ η(z) < λ1 a.e. on Z, θ , η �= 0 and − ∫
Z θ(z)dz < p ln 2.

In the analysis of problem (1), we will use the following two spaces:

W1,p
n (Z) =

{
x ∈ W1,p(Z) : x = lim

k→∞
xk in W1,p(Z), xk ∈ C∞(Z), ∂xk

∂n
= 0 on ∂Z

}

and

C1
n(Z) =

{
x ∈ C1(Z) :

∂x
∂n

= 0 on ∂Z
}

.

Both are Banach spaces with ordered cones given by

W+ =
{

x ∈ W1,p
n (Z) : x(z) ≥ 0 a.e. on Z

}

and C+ =
{

x ∈ C1
n(Z) : x(z) ≥ 0 for all z ∈ Z

}
.

Moreover, we know that int C+ �= ∅ and more precisely

int C+ = {x ∈ C+ : x(z) > 0 for all z ∈ Z} .

In this section, we prove the existence of a solution x0 ∈ int C+ for problem (1).
To do this we will need a general result of independent interest about local C1

n(Z)-
minimizers of certain locally Lipschitz functionals. It extends earlier results of Brézis
and Nirenberg [7] and Garcia Azorero et al. [15]. In Brézis and Nirenberg [7], p = 2
(semilinear case), the boundary conditions are Dirichlet and the potential function is
smooth (i.e., j(z, ·) ∈ C1(IR)). In Garcia Azorero et al. [15], p �= 2 (nonlinear case), but
the boundary conditions and the potential functions are as in Brézis and Nirenberg
[7]. So we introduce the following hypotheses:
H(j0): j0: Z × IR → IR is a function such that

(1) for all x ∈ IR, z → j0(z, x) is measurable;
(2) for almost all z ∈ Z, x → j0(z, x) is locally Lipschitz;
(3) for almost all z ∈ Z, all x ∈ IR and all u ∈ ∂j(z, x), we have

|u| ≤ a0(z)+ c0|x|r−1,

with a0 ∈ L∞(Z)+, c0 > 0 and 1 < r < p∗ =
{

Np
N−p , if N > p ,
+∞, if N ≤ p .

We consider the functional ϕ0: W1,p
n (Z) → IR defined by

ϕ0(x) = 1
p

‖Dx‖p
p −

∫

Z
j0(z, x(z))dz for all x ∈ W1,p

n (Z) .

We know that ϕ0 is Lipschitz continuous on bounded sets, hence locally Lipschitz (see
Clarke [11], p. 83).

Proposition 3.1 If x0 ∈ W1,p
n (Z) is a local C1

n(Z)-minimizer of ϕ0, i.e., there exists
ρ1 > 0 such that

ϕ0(x0) ≤ ϕ0(x0 + h) for all h ∈ C1
n(Z), ‖h‖C1

n(Z)
≤ ρ1
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then x0 ∈ C1
n(Z) and is a local W1,p

n (Z)-minimizer of ϕ0, i.e., there exists ρ2 > 0 such
that

ϕ0(x0) ≤ ϕ0(x0 + h) for all h ∈ W1,p
n (Z), ‖h‖ ≤ ρ2.

Proof Let h ∈ C1
n(Z). If λ > 0 is small, then by hypothesis

ϕ0(x0) ≤ ϕ0(x0 + λh)

and from this it follows that

0 ≤ ϕ0
0(x0; h) for all h ∈ C1

n(Z). (5)

Recall that ϕ0
0(x0; ·) is continuous on W1,p

n (Z) and that C1
n(Z) is dense in W1,p

n (Z). So
from (5), we infer that

0 ≤ ϕ0
0(x0; h) for all h ∈ W1,p

n (Z)

so

0 ∈ ∂ϕ0(x0). (6)

In what follows by 〈·, ·〉 and 〈·, ·〉0 we denote, respectively, the duality brackets for the

pairs
(

W1,p
n (Z)∗, W1,p

n (Z)
)

and
(

W−1,p′
(Z), W1,p

0 (Z)
)

. Let A: W1,p
n (Z) → W1,p

n (Z)∗ be

the nonlinear operator defined by

〈A(x), y〉 =
∫

Z
|Dx|p−2(Dx, Dy)IRN dz .

From Clarke [10], p. 83, we know that any v ∈ ∂ϕ0(x0) can be written as

v = A(x0)− u0

with u0 ∈ Lr′
(Z) ( 1

r + 1
r′ = 1), u0(z) ∈ ∂j0(z, x0(z)) a.e. on Z. So from (6), we have

A(x0) = u0 for some u0 ∈ Lr′
(Z), u0(z) ∈ ∂j0(z, x0(z)) a.e. on Z . (7)

From the representation theorem for the elements of W−1,p′
(Z) = W1,p

0 (Z)∗ ( 1
p + 1

p′ =
1) (see for example Adams [1], p. 50), we know that

− div
(
|D(x0)|p−2D(x0)

)
∈ W−1,p′

(Z) . (8)

On (7) we act with v ∈ C1
c(Z) and obtain

〈A(x0), v〉 =
∫

Z
|Dx0|p−2(Dx0, Dv)IRN dz =

∫

Z
u0v dz . (9)

Then from the definition of the distributional derivative, (8) and (9), we have

〈A(x0), v〉 = 〈−div(|Dx0|p−2Dx0), v〉0

so (9) forces

〈−div(|Dx0|p−2Dx0), v〉0 =
∫

Z
u0v dz = 〈u0, v〉0 for all v ∈ C1

c(Z). (10)
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Since C1
c (Z) is dense in W1,p

0 (Z), from (10) it follows that

− div(|Dx0(z)|p−2Dx0(z)) = u0(z) a.e. on Z. (11)

Invoking Green’s identity for quasi-linear operators (see Casas and Fernandez [9]
and Kenmochi [20]), we have

∫

Z
[div(|Dx0|p−2Dx0)]v dz +

∫

Z
|Dx0|p−2(Dx0, Dv)IRN dz

=
〈
∂x0

∂np
, γ0(v)

〉

∂Z
for all v ∈ W1,p(Z) . (12)

Here by 〈·, ·〉∂Z we denote the duality brackets for the pair
(

W
− 1

p′ ,p′
(∂Z), W

1
p′ ,p
(∂Z)

)

and γ0 is the trace map on W1,p(Z). Using (11) in (12), we obtain

−
∫

Z
u0v dz +

∫

Z
|Dx0|p−2(Dx0, Dv)IRN dz =

〈
∂x0

∂np
, γ0(v)

〉

∂Z
;

now, (9) and the previous equality yield
〈
∂x0

∂np
, γ0(v)

〉

∂Z
= 0 for all v ∈ W1,p(Z) . (13)

Recall that γ0(W1,p(Z)) = W1/p′,p(∂Z). So from (13), we infer that

∂x0

∂np
= 0 in W−1/p′,p′

(∂Z). (14)

From Theorem 7.1, p. 286, of Ladyzhenskaya and Uraltseva [21], we have x0 ∈
L∞(Z). Then from Theorem 2 of Lieberman [23] implies x0 ∈ C1,β

n (Z) for some
0 < β < 1. So in (14), the equality is interpreted pointwise on ∂Z, i.e., x0 ∈ C1

n(Z).
Suppose the proposition was not true. Since ϕ0 is weakly lower semicontinuous and

the set Bε = {h ∈ W1,p
n (Z) : ‖h‖ ≤ ε} is w-compact, by the Weierstrass theorem, for

any ε > 0 we can find hε ∈ Bε such that

ϕ0(x0 + hε) = min[ϕ0(x0 + h) : h ∈ Bε] < ϕ0(x0). (15)

From the nonsmooth Lagrange multiplier rule of Clarke [10], we can find λε ≤ 0
such that

λεθ
′
ε(hε) ∈ ∂ϕ0(x0 + hε),

where θε(h) = 1
p (‖h‖p − εp). It follows that

A(x0 + hε)− uε = λεA(hε)+ λεK(hε), (16)

where uε ∈ Lr′
(Z), uε(z) ∈ ∂j0(z, (x0 + hε)(z)) a.e. on Z and K: Lp(Z) → Lp′

(Z) is
defined by K(h)(·) = |h(·)|p−2h(·). Evidently, K|W1,p

n (Z)
is completely continuous into

Lp′
(Z) ⊆ W1,p

n (Z)∗. From (16) and (7), we have

A(x0 + hε)− A(x0)− λεA(hε) = uε − u0 + λεK(hε).
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From this operator equation, as before, we deduce that

−�p(x0 + hε)(z)+�px0(z)+ λε�phε(z)

= uε(z)− u0(z)+ λε|hε(z)|p−2hε(z) a.e. on Z. (17)

We introduce the function V: Z × IRN → IRN defined by

V(z, ξ) = |Dx0(z)+ ξ |p−2(Dx0(z)+ ξ)− |Dx0(z)|p−2Dx0(z)− λε|ξ |p−2ξ .

Evidently V(z, ξ) is a Carathéodory function (i.e., it is measurable in z ∈ Z and
continuous in ξ ∈ IRN , hence jointly measurable on Z × IRN) and exhibits a (p − 1)-
polynomial growth in the ξ ∈ IRN variable. We rewrite (17) as follows

− div V(z, hε(z)) = uε(z)− u0(z)+ λε|hε(z)|p−2hε(z) a.e. on Z. (18)

As earlier, via Green’s identity for quasi-linear operators (see Casas and Fernandez
[9] and Kenmochi [20]), we have

∂hε
∂np

(z) = 0 for all z ∈ ∂Z. (19)

Since 2 ≤ p < +∞ and λε ≤ 0, for almost all z ∈ Z and all ξ ∈ IRN

(V(z, ξ), ξ)IRN ≥ ĉ|ξ |p − λε|ξ |p ≥ ĉ|ξ |p.

So from (18), (19), Theorem 7.1, p. 286 of Ladyzhenskaya and Uraltseva [21] and
Theorem 2 of Lieberman [23], we can find β0 ∈ (0, 1) and γ0 > 0, both independent
of ε ∈ (0, 1] and λε such that

hε ∈ C1,β0
n (Z) and ‖hε‖C

1,β0
n (Z)

≤ γ0. (20)

Now let εn ↓ 0 and set hn = hεn . Since C1,β0
n (Z) is compactly embedded in C1

n(Z), we
may assume that

hn → ĥ in C1
n(Z) as n → +∞.

On the other hand, ‖hn‖ ≤ εn, hence

hn → 0 in W1,p
n (Z) as n → +∞.

Therefore, ĥ = 0 and so for n ≥ 1 large we have

‖hn‖C1
n(Z)

≤ ρ1

and from this we infer that

ϕ0(x0) ≤ ϕ0(x0 + hn),

which contradicts (15). ��

The next proposition underlines the significance of the nonuniform nonresonance
condition at +∞ (see the first part of hypothesis H(j) (4)) and will allow the use of
variational arguments on a suitably truncated energy functional.
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Lemma 3.1 If θ ∈ L∞(Z), θ(z) ≤ 0, a.e. on Z and the inequality is strict on a set of
positive measure, then there exists ξ0 > 0 such that

�(x) = ‖Dx‖p
p −

∫

Z
θ(z)|x(z)|pdz ≥ ξ0‖x‖p for all x ∈ W1,p(Z).

Proof Evidently � ≥ 0. Suppose that the proposition is not true. Since � is
p-positively homogeneous, we can find {xn} ⊆ W1,p(Z) such that ‖xn‖ = 1 and
�(xn) ↓ 0. By passing to a suitable subsequence if necessary, we may assume that

xn ⇀ x in W1,p(Z), xn → x in Lp(Z), xn(z) → x(z) a.e. on Z

and

|xn(z)| ≤ k(z) for a.a. z ∈ Z, all n ≥ 1 with k ∈ Lp(Z)+ .

Then we have

‖Dx‖p
p ≤ lim inf

n→+∞ ‖Dxn‖p
p

and from the dominated convergence theorem
∫

Z
θ(z)|xn(z)|pdz →

∫

Z
θ(z)|x(z)|pdz.

Therefore

�(x) ≤ lim inf
n→+∞�(xn),

and this implies that

‖Dx‖p
p ≤

∫

Z
θ(z)|x(z)|pdz ≤ 0, (21)

so ‖Dx‖p = 0 and

x ≡ c ∈ IR .

If c = 0, then ‖Dxn‖p → 0 and so xn → 0 in W1,p(Z), a contradiction to the fact that
‖xn‖ = 1 for all n ≥ 1.
If c �= 0, then from the first inequality in (21) and the assumptions on θ , we have

0 ≤ |c|p
∫

Z
θ(z)dz < 0,

again a contradiction. This completes the proof of the proposition. ��
Now we are ready to produce the first positive solution of problem (1). For this

purpose we introduce ϕ: W1,p
n (Z) → IR, the Euler functional for problem (1), defined

by

ϕ(x) = 1
p

‖Dx‖p
p −

∫

Z
j(z, x(z))dz for all x ∈ W1,p

n (Z).

We know that ϕ is Lipschitz continuous on bounded sets, hence locally Lipschitz (see
Clarke [10], p. 83).
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Proposition 3.2 If hypotheses H(j) hold, then problem (1) has a solution x0 ∈ int C+
which is a local minimizer of ϕ.

Proof By virtue of hypotheses H(j) (4), given ε > 0, we can find M = M(ε) > 0 such
that

u ≤ (θ(z)+ ε) xp−1 for a.a. z ∈ Z, all x ≥ M and all u ∈ ∂j(z, x). (22)

On the other hand, from hypotheses H(j) (3), corresponding to M we can find aε ∈
L∞(Z)+ such that

u ≤ aε(z) for a.a. z ∈ Z, all 0 ≤ x < M and all u ∈ ∂j(z, x) . (23)

From (22) and (23) and since θ ≤ 0, we obtain

u ≤ (θ(z)+ ε) xp−1 + âε(z) (24)

for a.a. z ∈ Z, all x ≥ 0, all u ∈ ∂j(z, x), with âε ∈ L∞(Z)+. Because of hypotheses
H(j) (1), (2) and Rademacher’s theorem, we can find D ⊆ Z a Lebesgue-null set such
that for all z ∈ Z\D, the function r → j(z, r) is almost everywhere differentiable on
IR and at a differentiability point r ∈ IR, we have d

dr
j(z, r) ∈ ∂j(z, r) (see Clarke [11],

p. 32). So using (24), we have

d
dr

j(z, r) ≤ (θ(z)+ ε) rp−1 + âε(z) for all z ∈ Z\D and a.a. r ≥ 0.

We integrate this inequality over the interval [0, x], x ≥ 0 and obtain

j(z, x) ≤ 1
p
(θ(z)+ ε) xp + âε(z)x for all z ∈ Z\D and all x ≥ 0. (25)

Then, taking into account (25) and Proposition 3.1, for every x ∈ W+, we have

ϕ(x) = 1
p

‖Dx‖p
p −

∫

Z
j(z, x(z))dz ≥ 1

p
‖Dx‖p

p − 1
p

∫

Z
θ |x|pdz

− ε
p

‖x‖p − c1‖x‖ ≥ ξ0 − ε

p
‖x‖p − c1‖x‖ . (26)

If we choose 0 < ε < ξ0, from (26) we see that ϕ|W+ is coercive. Moreover, exploiting

the compact embedding of W1,p
n (Z) into Lp(Z), we can easily verify that ϕ is weakly

lower semicontinuous. Therefore by the Weierstrass theorem, we can find x0 ∈ W+
such that

ϕ(x0) = inf
W+
ϕ = m+.

From hypotheses H(j) (6) and for c0 ∈ W+ \ {0}, we have

ϕ(c0) = −
∫

Z
j(z, c0)dz < 0 = ϕ(0),

so

ϕ(x0) = m+ < 0 = ϕ(0), i.e., x0 �= 0.

From the optimality condition of Clarke [11], p. 52, we have

0 ∈ ∂ϕ(x0)+ NW+(x0), (27)
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with NW+(x0) being the normal cone to W+ at x0, i.e.,

NW+(x0) = {v∗ ∈ W1,p
n (Z)∗ : 〈v∗, v − x0〉 ≤ 0 for all v ∈ W+}. (28)

From (27) we see that we can find x∗ ∈ ∂ϕ(x0) such that −x∗ ∈ NW+(x0). We know
that (see the definition of ϕ)

x∗ = A(x0)− u0,

with u0 ∈ Lp′
(Z)

(
1
p + 1

p′ = 1
)

, u0(z) ∈ ∂j(z, x0(z)) a.e. on Z. Therefore

−A(x0)+ u0 ∈ NW+(x0)

and hence

0 ≤ 〈A(x0)− u0, v − x0〉 for all v ∈ W+ . (29)

Given ε > 0 and h ∈ W1,p
n (Z), we set

v = (x0 + εh)+ = (x0 + εh)+ (x0 + εh)− ∈ W+ .

Recall that for any w ∈ W1,p
n (Z), both w+ = max{w, 0} and w− = max{−w, 0} belong

to W1,p
n (Z). Using this v ∈ W+ as test function in (29), we obtain

− 〈x∗, (x0 + εh)−〉 ≤ ε〈x∗, h〉 . (30)

We set Z−
ε = {z ∈ Z : (x0 + εh)(z) < 0}. We know that

D
[
(x0 + εh)−

]
(z) =

{−D(x0 + εh)(z), if z ∈ Z−
ε ,

0, otherwise.
(31)

Then we have

−〈x∗, (x0 + εh)−〉 = −〈A(x0), (x0 + εh)−〉 +
∫

Z
u0(x0 + εh)−dz

= −
∫

Z
|Dx0|p−2 (

Dx0, D(x0 + εh)−
)

IRN dz +
∫

Z
u0(x0 + εh)−dz. (32)

Next we estimate both integrals in the right hand side of (32). Because of (31)

−
∫

Z
|Dx0|p−2 (

Dx0, D(x0 + εh)−
)

IRN dz =
∫

Z−
ε

|Dx0|p−2 (Dx0, D(x0 + εh))IRN dz

≥ ε

∫

Z−
ε

|Dx0|p−2 (Dx0, Dh)IRN dz . (33)

Also (recall that x0 ∈ W+)
∫

Z
u0(x0 + εh)−dz = −

∫

Z−
ε

u0(x0 + εh)dz

= −ε
∫

Z−
ε ∩{x0=0}

u0h dz −
∫

Z−
ε ∩{x0>0}

u0(x0 + εh)dz . (34)

As ∂j(z, 0) ⊆ IR+, then u0(z) ≥ 0 a.e. on {x0 = 0}, while h(z) < 0 on Z−
ε ∩ {x0 = 0}.

Hence

− ε

∫

Z−
ε ∩{x0=0}

u0h dz ≥ 0. (35)



378 J Glob Optim (2007) 39:365–392

Let M0 > 0 be as in hypothesis H(j) (6) and aM0 the function of L∞(Z)+ correspond-
ing to the choice r = M0 in hypothesis H(j) (3). Then, bearing in mind both H(j) (3)
and (6)

−
∫

Z−
ε ∩{x0>0}

u0(x0 + εh)dz

= −
∫

Z−
ε ∩{0<x0<M0}

u0(x0 + εh)dz −
∫

Z−
ε ∩{x0≥M0}

u0(x0 + εh)dz

≥ −
∫

Z−
ε ∩{0<x0<M0}

aM0(x0 + εh)dz −
∫

Z−
ε ∩{x0≥M0}

u0(x0 + εh)dz

≥ −ε
∫

Z−
ε ∩{x0≥M0}

u0h dz . (36)

We use (35) and (36) in (34). Hence
∫

Z
u0(x0 + εh)−dz ≥ −ε

∫

Z−
ε ∩{x0≥M0}

u0h dz . (37)

Then we return to (32) and plug-in (33) and (37). We obtain

−〈x∗, (x0 + εh)−〉 ≥ ε

∫

Z−
ε

|Dx0|p−2 (Dx0, Dh)IRN dz − ε

∫

Z−
ε ∩{x0≥M0}

u0h dz

and finally, (30) yields

〈x∗, h〉 ≥
∫

Z−
ε

|Dx0|p−2 (Dx0, Dh)IRN dz −
∫

Z−
ε ∩{x0≥M0}

u0h dz .

From Stampacchia’s theorem, we know that Dx0(z) = 0 a.e. on {x0 = 0}. Hence

〈x∗, h〉 ≥
∫

Z−
ε ∩{x0>0}

|Dx0|p−2 (Dx0, Dh)IRN dz −
∫

Z−
ε ∩{x0≥M0}

u0h dz . (38)

If by | · |N we denote the Lebesgue measure on IRN , we see that
∣∣Z−
ε ∩ {x0 > 0}∣∣N → 0 as ε ↓ 0 .

So if in (38), we pass to the limit as ε ↓ 0, we obtain

0 ≤ 〈x∗, h〉 . (39)

But h ∈ W1,p
n (Z) was arbitrary. So from (39) it follows

x∗ = 0,

that is,

A(x0) = u0 . (40)

From (40), arguing as in the proof of Proposition 3.1, using the nonlinear Green’s
identity and nonlinear regularity theory, we obtain that x0 ∈ C+ and it solves problem
(1). So

−div
(
|Dx0(z)|p−2Dx0(z)

)
= u0(z) a.e. on Z .
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Taking into account hypothesis H(j) (6) we deduce

div
(
|Dx0(z)|p−2Dx0(z)

)
≤ cx0(z)p−1 a.e. on Z .

Invoking the maximum principle of Vazquez [29], we obtain

x0 ∈ int C+ .

Therefore, we can findρ1 > 0 such that x0+B
C1

n
ρ1

= x0+
{

h ∈ C1
n(Z) : ‖h‖C1

n(Z)
≤ ρ1

}
⊆

C+ ⊆ W+. Hence, recalling that x0 is a minimizer of ϕ on W+,

ϕ(x0) ≤ ϕ(x0 + h) for all h ∈ C1
n(Z), ‖h‖C1

n(Z)
≤ ρ1 .

Invoking Proposition 3.1, we can find ρ2 > 0 such that

ϕ(x0) ≤ ϕ(x0 + h) for all h ∈ W1,p
n (Z), ‖h‖ ≤ ρ2,

that is, x0 is a local W1,p
n -minimizer of ϕ. ��

4 Existence of a second positive solution

In this section, we produce a second positive solution for problem (1). To do this, we
employ a degree theoretic approach based on the degree map d̂ introduced in Sect. 2.

We start with some auxiliary results which pave the way for the implementation
of the degree theoretic methods. So let A : W1,p

n (Z) → W1,p
n (Z)∗ be the nonlinear

operator introduced in the proof of Proposition 3.1 and defined by

〈A(x), y〉 =
∫

Z
|Dx|p−2 (Dx, Dy)IRN dz for all x, y ∈ W1,p(Z). (41)

Proposition 4.1 A: W1,p
n (Z) → W1,p

n (Z)∗ is a bounded, continuous, (S)+-operator.

Proof From (41), we easily see that A is bounded, continuous, monotone, hence
maximal monotone. Let xn ⇀ x in W1,p

n (Z) and assume that lim supn→+∞〈A(xn), xn −
x〉 ≤ 0. Since A is maximal monotone, it is generalized pseudomonotone (see Gasinski
and Papageorgiou [16], p. 330) and so

‖Dxn‖p
p = 〈A(xn), xn〉 → 〈A(x), x〉 = ‖Dx‖p

p .

Also we have Dxn ⇀ Dx in Lp(Z, IRN). Since Lp(Z, IRN) is uniformly convex, it has
the Kadec–Klee property. Therefore, it follows that

Dxn → Dx in Lp(Z, IRN) as n → +∞. (42)

Also from the compact embedding of W1,p
n (Z) into Lp(Z), we also have

xn → x in Lp(Z) as n → +∞. (43)

From (42) and (43) we conclude that xn → x in W1,p
n (Z), which proves that A is an

(S)+-operator. ��
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Let N̂: Lp(Z) → 2Lp′
(Z)( 1

p + 1
p′ = 1) be the multivalued map defined by

N̂(x) = {u ∈ Lp′
(Z) : u(z) ∈ ∂j(z, x(z)) a.e. on Z} .

This is the multivalued Nemytskii operator corresponding to the generalized sub-
differential multifunction x → ∂j(z, x). From Proposition 3 of Aizicovici et al. [2], we
know that N̂ has nonempty, weakly compact and convex values and it is upper semi-
continuous from Lp(Z) with the norm topology into Lp′

(Z) with the weak topology.
Since W1,p

n (Z) is embedded compactly in Lp(Z) and so does Lp′
(Z) into W1,p

n (Z)∗, we
deduce that:

Proposition 4.2 If hypothesis H(j) hold, then N = N̂|W1,p
n (Z)

: W1,p
n (Z) → 2W1,p

n (Z)∗ \{∅}
is a multifunction of class (P).

In the next proposition, we examine the monotonicity properties of the map m →
λ̂1(m). A similar result for the second “Dirichlet” eigenvalue, was proved by Anane
and Tsouli [3].

Proposition 4.3 If m, m′ ∈ L∞(Z)+, m �= 0 and m(z) < m′(z) for a.a. z ∈ Z, then
λ̂1(m′) < λ̂1(m).

Proof Let u1 ∈ C1
n(Z) be an eigenfunction corresponding to the eigenvalue λ̂1(m′).

From Lê [22] we know that u1 changes sign and it has two nodal domains Z+ = {u1 >

0} and Z− = {u1 < 0}. We set

w±(z) =
⎧⎨
⎩

u1(z)(∫
Z± m′|u1|pdz

)1/p , if z ∈ Z± ,

0 otherwise .

Clearly w± ∈ C1
n(Z) and the two functions are linearly independent. So, if Y =

span{w+, w−}, then dimY = 2 and for w ∈ Y, we have w = t1w+ + t2w− with
t1, t2 ∈ IR. Note that

w → ϕm′(w)1/p =
(∫

Z
m′|w|pdz

)1/p

= (|t1|p + |t2|p
)1/p

(see Sect. 2), is an equivalent norm on Y and so if we set

S1 =
{

w ∈ Y : ϕm′(w) = 1

λ̂1(m′)+ 1

}
,

then S1 is homeomorphic to the unit sphere in IR2. Therefore, if by γ (·)we denote the
Krasnoselskii genus (see for example Gasinski and Papageorgiou [16], p. 680), then

γ (S1) = 2.

From the definition of λ̂1(m) (see (4)), we have

ψm′(w±) = (̂
λ1(m

′)+ 1
)
ϕm′(w±),

hence

ψm′(w) = (̂
λ1(m

′)+ 1
) (|t1|p + |t2|p

) = (̂
λ1(m

′)+ 1
)
ϕm′(w) = 1 for all w ∈ S1,
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that is, S1 ⊆ S(ψm′) (recall that S(ψm′) = ψ−1
m′ (1)). Using once again (4), we have

inf
w∈S1

ϕm′(w) = 1

λ̂1(m′)+ 1
. (44)

But note that for w ∈ Y, we have

ϕm(w) < ϕm′(w);

as S1 is compact, from (44) we deduce

1

λ̂1(m)+ 1
<

1

λ̂1(m′)+ 1

and finally

λ̂1(m
′) < λ̂1(m) . ��

Propositions 4.1 and 4.2, permit us to compute the d̂-degree of the nonlinear mul-
tivalued operator x → A(x)− N(x) for large balls, BR = {x ∈ W1,p

n (Z) : ‖x‖ < R}.
Proposition 4.4 If hypotheses H(j) hold, then there exists R0 > 0 such that
d̂(A − N, BR, 0) = 0 for all R ≥ R0.

Proof Let K, K− : W1,p
n (Z) → W1,p

n (Z)∗ be the nonlinear operators defined by

K(x)(·) = |x(·)|p−2x(·) and K−(x)(·) = (
x−(·))p−1 for all x ∈ W1,p

n (Z).

Evidently both maps are completely continuous. Also we fix h ∈ L∞(Z)+ such that
0 ≤ h(z) < λ1 a.e. on Z, h �= 0 and |{z ∈ Z : h(z) > 0, θ1(z) > 0}|N > 0. Then we
choose θ0 ∈ L∞(Z), θ0 �= 0, θ0 ≤ 0 a.e. on Z such that 0 ≤ h(z)+θ0(z), 0 ≤ θ1(z)+θ0(z)
a.e. on Z, h + θ0 �= 0, h + θ1 �= 0. We consider the homotopy H1 : [0, 1] × W1,p

n (Z) →
2W1,p

n (Z)∗ \ {∅} defined by

H1(t, x) = A(x)− θ0K(x)− tN(x)+ (1 − t)hK−(x).

This is an admissible homotopy.

Claim I There exists R̂0 > 0 such that 0 /∈ H1(t, x) for all t ∈ [0, 1] and all ‖x‖ = R ≥ R̂0.
We argue indirectly. So suppose the Claim is not true. Then we can find {tn}n≥1 ⊆ [0, 1],
{xn}n≥1 ⊆ W1,p

n (Z) and {un} ∈ N(xn) such that

tn → t, ‖xn‖ → +∞ and A(xn)− θ0K(xn) = tnun − (1 − tn)hK−(xn). (45)

On the equation in (45), we act with the test function x+
n ∈ W1,p

n (Z) and, owing to
Proposition 3.1, we obtain

ξ0‖x+
n ‖p ≤ ‖Dx+

n ‖p
p −

∫

Z
θ0|x+

n |pdz = tn

∫

Z
unx+

n dz . (46)

Suppose that {x+
n }n≥1 is unbounded. We may assume that ‖x+

n ‖ → +∞. We set

yn = x+
n

‖x+
n ‖ , n ≥ 1. By passing to a suitable subsequence if necessary, we may assume

that

yn ⇀ y in W1,p
n (Z), yn → y in Lp(Z), yn(z) → y(z) a.e. on Z
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and

|yn(z)| ≤ k(z) a.e. on Z, for all n ≥ 1, with k ∈ Lp(Z)+ .

Let ûn(z) = χ{xn>0}(z)un(z). Then

un(z)x+
n (z) = ûn(z)x+

n (z) .

If we use this in (46), then we obtain

ξ0‖yn‖p ≤ tn

∫

Z

ûn

‖x+
n ‖p−1

yndz . (47)

From hypotheses H(j) (4), (6), we see that given ε > 0, we can find cε > 0 such that

−cxp−1 − cε ≤ u ≤ εxp−1 + cε for a.a. z ∈ Z, all x ≥ 0, all u ∈ ∂j(z, x);

from this inequalities immediately follows that

− cyn(z)p−1 − cε
‖x+

n ‖p−1
≤ ûn(z)

‖x+
n ‖p−1

≤ εyn(z)p−1 + cε
‖x+

n ‖p−1
(48)

for a.a. z ∈ Z, all n ≥ 1, namely
{

ûn

‖x+
n ‖p−1

}

n≥1
⊆ Lp′

(Z) is bounded .

So we may assume that

ûn

‖x+
n ‖p−1

⇀ β in Lp′
(Z) as n → +∞ .

From (48), Mazur’s Lemma and because ε > 0 was arbitrary, we deduce that β ≤ 0.
Hence if we pass to the limit as n → +∞ in (47), we obtain

yn → 0 in W1,p
n (Z),

a contradiction to the fact that ‖yn‖ = 1 for all n ≥ 1. This proves that {x+
n }n≥1 ⊆

W1,p
n (Z) is bounded. Since ‖xn‖ → +∞, we must have ‖x−

n ‖ → +∞. Now we set

yn = x−
n

‖x−
n ‖ , n ≥ 1. As before we may assume that

yn ⇀ y in W1,p
n (Z), yn → y in Lp(Z), yn(z) → y(z) a.e. on Z

and

|yn(z)| ≤ k(z) a.e. on Z for all n ≥ 1 with k ∈ Lp(Z)+ .

Note that A(xn) = A(x+
n )− A(x−

n ), K(xn) = K(x+
n )− K(x−

n ). So from (45), we have

A(x+
n )− A(x−

n )− θ0K(x+
n )− θ0K(x−

n ) = tnun − (1 − tn)hK−(xn) .

Dividing with ‖x−
n ‖p−1, we have

1

‖x−
n ‖p−1

A(x+
n )− A(yn)− θ0

K(x+
n )

‖x−
n ‖p−1

− θ0K(yn) = tn
un

‖x−
n ‖p−1

− (1 − tn)hK(yn),

(49)
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acting with the test function yn − y ∈ W1,p
n (Z) we obtain

1

‖x−
n ‖p−1

〈A(x+
n ), yn − y〉 − 〈A(yn), yn − y〉

−
∫

Z
θ0
(x+

n )
p−1

‖x−
n ‖p−1

(yn − y)dz +
∫

Z
θ0|yn|p−2yn(yn − y)dz (50)

= tn

∫

Z

un

‖x−
n ‖p−1

(yn − y)dz − (1 − tn)
∫

Z
h|yn|p−2yn(yn − y)dz .

Since the operators A and K are bounded and {x+
n }n≥1 is bounded, we have

1

‖x−
n ‖p−1

〈A(x+
n ), yn − y〉 → 0 and

∫

Z
θ0
(x+

n )
p−1

‖x−
n ‖p−1

(yn − y)dz → 0 as n → +∞.

(51)

Clearly we have
∫

Z
h|yn|p−1(yn − y)dz → 0 and

∫

Z
θ0|yn|p−2yn(yn − y)dz → 0 as n → +∞.

(52)

Moreover, if we set

ûn(z) = χ{xn≥0}(z)un(z) and un(z) = χ{xn<0}(z)un(z)

then ∫

Z

un

‖x−
n ‖p−1

(yn − y)dz =
∫

Z

ûn

‖x−
n ‖p−1

(yn − y)dz +
∫

Z

un

‖x−
n ‖p−1

(yn − y)dz. (53)

From the boundedness of {x+
n }n≥1, we see that {̂un}n≥1 ⊆ Lp′

(Z) is bounded and so
∫

Z

ûn

‖x−
n ‖p−1

(yn − y)dz → 0 as n → +∞. (54)

Furthermore, hypotheses H(j) (3)–(6), imply that

|u| ≤ c2|x|p−1 for a.a. z ∈ Z, all x ∈ IR all u ∈ ∂j(z, x) with c2 > 0,

so

|un(z)|
‖x−

n ‖p−1
≤ c2

x−
n (z)

p−1

‖x−
n ‖p−1

+ c2yn(z)
p−1 a.e. on Z, for all n ≥ 1, (55)

hence {
un

‖x−
n ‖p−1

}

n≥1
⊆ Lp′

(Z) is bounded

and from this we deduce that∫

Z

un

‖x−
n ‖p−1

(yn − y)dz → 0 as n → +∞. (56)

Using (54) and (56) in (53), we see that
∫

Z

un

‖x−
n ‖p−1

(yn − y)dz → 0 as n → +∞. (57)
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So, if we return to (50), pass to the limit as n → +∞ and use (51), (52), and (57), we
have

lim
n→+∞〈A(yn), yn − y〉 = 0.

Since A is an (S)+-operator (see Proposition 4.1), it follows that

yn → y in W1,p
n (Z), ‖y‖ = 1 .

Because of the boundedness of
{

un
‖x−

n ‖p−1

}
n≥1

in Lp′
(Z), we may assume that

un

‖x−
n ‖p−1

⇀ γ in Lp′
(Z) as n → +∞.

For every ε > 0 and n ≥ 1, we consider the set

Cε,n =
{

z ∈ Z; xn(z) < 0, θ1(z)− ε ≤ un(z)

−x−
n (z)p−1

≤ θ2(z)+ ε

}
.

Note that x−
n (z) → +∞ for a.a. z ∈ {y > 0}. So by virtue of hypotheses H(j) (4), we

have

χCε,n
→ 1 a.e. on {y > 0}

and the dominated convergence theorem yields
∥∥∥∥
(

1 − χCε,n

) un

‖x−
n ‖p−1

∥∥∥∥
Lp′

({y>0})
→ 0,

so

χCε,n

un

‖x−
n ‖p−1

⇀ γ in Lp′
({y > 0}) . (58)

From the definition of the set Cε,n, we have

−χCε,n
(z) (θ2(z)+ ε) yn(z)

p−1 ≤ χCε,n
(z)

un

‖x−
n ‖p−1

≤ −χCε,n
(z) (θ1(z)− ε) yn(z)

p−1 a.e. on Z.

Passing to the limit as n → +∞ and using (58) and Mazur’s lemma, we obtain

− (θ2(z)+ ε) y(z)p−1 ≤ γ (z) ≤ − (θ1(z)− ε) y(z)p−1 a.e. on {y > 0}.
Since ε > 0 was arbitrary, we let ε ↓ 0 and so

− θ2(z)y(z)p−1 ≤ γ (z) ≤ −θ1(z)y(z)
p−1 a.e. on {y > 0}. (59)

In addition, from (55) we see that

γ (z) = 0 a.e. on {y = 0}. (60)

Since y ≥ 0, from (60) it follows that (59) holds a.e. on Z, so we can write

γ (z) = −g(z)y(z)p−1 a.e. on Z,
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with g ∈ L∞(Z)+, θ1(z) ≤ g(z) ≤ θ2(z) a.e. on Z. If we pass to the limit as n → +∞
in (49) and recalling that yn → y in W1,p

n (Z), we obtain

−A(y)+ θ0K(y) = −tgK(y)− (1 − t)hK(y),

that is,

A(y)− θ0K(y) = ξK(y) with ξ = tg + (1 − t)h ∈ L∞(Z)+. (61)

As before, from (61), we have

−div(|Dy(z)|p−2Dy(z)) = (ξ + θ0) (z)|y(z)|p−2y(z) a.e. on Z,
∂y
∂np

= 0 on ∂Z . (62)

Note that from the choice of θ0, we have 0 ≤ (ξ + θ0) (z) < λ1 a.e. on Z, (ξ + θ0) �= 0.
Then Proposition 4.3 implies that

1 = λ̂1(λ1) < λ̂1 (ξ + θ0) (63)

and, since (ξ + θ0) �= 0 we have

λ̂0 (ξ + θ0) = 0 . (64)

From (63) and (64) it follows that 1 is not an eigenvalue of
(
−�p, W1,p

n (Z), ξ + θ0

)
.

This together with (62), implies that y = 0, a contradiction. So we have proved Claim I.
Then Claim I and the homotopy invariance property of the degree map d̂, imply

d̂ (A − θ0K − N, BR, 0) = d(S)+ (A − θ0K + hK−, BR, 0) for all R ≥ R̂0 . (65)

Next we compute d(S)+ (A − θ0K + hK−, BR, 0): to this end let µ ∈ L∞(Z)+, µ �= 0

and consider the (S)+-homotopy H2: [0, 1] × W1,p
n (Z) → 2W1,p

n (Z)∗ \ {∅} defined by

H2(t, x) = A(x)− θ0K(x)+ hK−(x)+ tµ.

We show that for all t ∈ [0, 1] and all x �= 0, we have

H2(t, x) �= 0 .

Indeed, if this is not the case, then for some t ∈ [0, 1] and for some x ∈ W1,p
n (Z), x �= 0,

we have

A(x)− θ0K(x) = −hK−(x)− tµ .

Acting with the test function x+, since µ ≥ 0 using Proposition 3.1, we have

ξ0‖x+‖p ≤ 0,

hence

x ≤ 0, x �= 0 .

Then

A(x)− θ0K(x) = −hK(−x)− tµ

and this equality can be written as

A(−x)− θ0K(−x) = hK(−x)+ tµ . (66)
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From (66) we obtain

{−div(|D(−x)(z)|p−2D(−x)(z)) = (h + θ0) (z)| − x(z)|p−2(−x)(z)+ tµ(z) a.e. on Z,
∂(−x)
∂np

= 0 on ∂Z . (67)

From nonlinear regularity theory, we have x ∈ C1
n(Z). Recall that from the choice

of θ0, we have that 1 is not an eigenvalue of
(
−�p, W1,p

n (Z), h + θ0

)
. If t = 0, then

from (52), we see that x = 0. If 0 < t ≤ 1, then from Remark 2.10 of Godoy et al. [17],
we have that problem (67) can not have a nontrivial positive solution, a contradiction
to the fact that −x ∈ C+, x �= 0. So once again the homotopy invariance of the degree
map d(S)+ implies

d(S)+ (A − θ0K + hK−, BR, 0) = d(S)+ (A − θ0K + hK− + µ, BR, 0) for all R > 0.

(68)

But from previous argument (in particular from Remark 2.10 of Godoy et al. [17]),
we see that

d(S)+ (A − θ0K + hK− + µ, BR, 0) = 0,

so, recalling (68) and (65) we obtain

d̂ (A − θ0K − N, BR, 0) = 0 for all R ≥ R̂0 . (69)

Finally, we consider the admissible homotopy H3: [0, 1] × W1,p
n (Z) → 2W1,p

n (Z)∗ \ {∅}
defined by

H3(t, x) = A(x)− N(x)− tθ0K(x) .

Claim II There exists R0 ≥ 0 such that 0 /∈ H3(t, x) for all t ∈ [0, 1] and all ‖x‖ = R ≥
R0.
As before, we proceed by contradiction. So suppose we can find {tn}n≥1 ⊆ [0, 1] and

{xn}n≥1 ⊆ W1,p
n (Z) and {un}n≥1, with un ∈ N(xn) for all n ∈ IN, such that

tn → t, ‖xn‖ → +∞ and A(xn)− tnθ0K(xn) = un, n ≥ 1 . (70)

On the equation in (70) we act with the test function x+
n ∈ W1,p

n (Z) and, recalling that
θ0 ≤ 0, we have

‖Dx+
n ‖p

p ≤
∫

Z
unx+

n dz . (71)

Suppose that {x+
n }n≥1 ⊆ W1,p

n (Z) is unbounded. We may assume that ‖x+
n ‖ → +∞.

We set ŷn = x+
n

‖x+
n ‖ . At least for a subsequence, we have

ŷn ⇀ ŷ in W1,p
n (Z), ŷn → ŷ in Lp(Z), ŷn(z) → ŷ(z) a.e. on Z

and

|̂yn(z)| ≤ k(z) a.e. on Z, for all n ≥ 1, with k ∈ Lp(Z)+.

We divide (71) with ‖x+
n ‖ and we obtain

‖Dŷn‖p
p ≤

∫

Z

un

‖x+
n ‖p−1

ŷndz .
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If we set ûn(z) = χ{xn>0}(z)un(z), then

‖Dŷn‖p
p ≤

∫

Z

ûn

‖x+
n ‖p−1

ŷndz . (72)

From (48) we know that
{

ûn
‖x+

n ‖p−1

}
n≥1

⊆ Lp′
(Z) is bounded, so we may assume that

ûn

‖x+
n ‖p−1

⇀ β in Lp′
(Z) as n → +∞ .

Note that x+
n (z) → +∞ a.e. on {̂y > 0}. So, as before, we can show that

β = ĝK(y),

with ĝ ∈ L∞(Z), −c ≤ ĝ(z) ≤ θ(z) a.e. on Z. Passing to the limit as n → +∞ in (72),
and recalling that ĝ ≤ 0 and ŷ ≥ 0, we obtain

‖Dŷ‖p
p ≤

∫

Z
ĝ ŷ p−1dz ≤ 0, (73)

namely

ŷ = ξ̂ ∈ IR+.

If ξ̂ = 0, then ŷn → 0 in W1,p
n (Z), a contradiction to the fact that ‖̂yn‖ = 1 for all

n ≥ 1. If ξ̂ > 0, then using the first inequality in (73), we have

0 ≤ ξ̂p−1
∫

Z
ĝ dz < 0,

again a contradiction. In this way, we have proved that {x+
n }n≥1 ⊆ W1,p

n (Z) is bounded.

Since ‖xn‖ → +∞, we must have ‖x−
n ‖ → +∞. Now we set ỹn = x−

n
‖x−

n ‖ , n ≥ 1. We can

say that

ỹn ⇀ ỹ in W1,p
n (Z), ỹn → ỹ in Lp(Z), ỹn(z) → ỹ(z) a.e. on Z

and

|̃yn(z)| ≤ k(z) a.e. on Z for all n ≥ 1, with k ∈ Lp(Z)+.

Note that −x−
n (z) → −∞ a.e. on {̃y > 0}. So, arguing as before, we obtain

A(̃y) = (tθ0 + g̃)K(̃y), ỹ �= 0, ‖̃y‖ = 1, (74)

with g̃ ∈ L∞(Z)+, θ1(z) ≤ g̃(z) ≤ θ2(z) a.e. on Z. From (74), we have

−div(|Dỹ(z)|p−2Dỹ(z)) = (tθ0 + g̃) (z)|̃y(z)|p−2̃y(z) a.e. on Z,
∂ ỹ
∂np

= 0 on ∂Z . (75)

Since 1 = λ̂1(λ1) < λ̂1 (̃g + tθ0), from (75) it follows that ỹ = 0, a contradiction with
(74). This proves Claim II.
The homotopy invariance of the degree map d̂, implies

d̂ (A − N, BR, 0) = d̂ (A − θ0K − N, BR, 0) for all R ≥ R0 . (76)

So if R0 = max{R̂0, R0}, then from (69) and (76), we infer that

d̂ (A − N, BR, 0) = 0 for all R ≥ R0. ��
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Next we conduct a similar computation for small balls.

Proposition 4.5 If hypotheses H(j) hold, then there exists ρ0 > 0 such that

d̂
(
A − N, Bρ , 0

) = 1 for all 0 < ρ ≤ ρ0 .

Proof Fix h ∈ L∞(Z), h(z) ≤ 0 a.e. on Z with strict inequality on a set of positive

measure and consider the admissible homotopy H4: [0, 1]× W1,p
n (Z) → 2W1,p

n (Z)∗ \ {∅}
defined by

H4(t, x) = A(x)− tN(x)− (1 − t)hK(x) .

Claim There exists ρ0 > 0 such that 0 /∈ H4(t, x) for all t ∈ [0, 1] and all 0 < ‖x‖ ≤ ρ0.
As in the proof of Proposition 4.4, we argue by contradiction so suppose we can find
{tn}n≥1 ⊆ [0, 1], {xn}n≥1 ⊆ W1,p

n (Z), {un}n≥1, with un ∈ N(xn) such that

tn → t, ‖xn‖ → 0 and A(xn) = tnun + (1 − tn)hK(xn), n ≥ 1 . (77)

We set yn = xn‖xn‖ , n ≥ 1. We may assume that

yn ⇀ y in W1,p
n (Z), yn → y in Lp(Z), yn(z) → y(z) a.e. on Z

and

|yn(z)| ≤ k(z) a.e. on Z, for all n ≥ 1 with k ∈ Lp(Z)+.

We divide the Eq. 77 with ‖xn‖p−1 and we obtain

A(yn) = tn
un

‖xn‖p−1
+ (1 − tn)K(yn). (78)

From the proof of Proposition 4.4, we know that

|u| ≤ c2|x|p−1 for a.a. z ∈ Z, all x ∈ IR, all u ∈ ∂j(z, x), with c2 > 0.

It follows that
{

un
‖xn‖p−1

}
n≥1

⊆ Lp′
(Z) is bounded and we may assume that

un

‖xn‖p−1
⇀ ĥ0 in Lp′

(Z) .

Arguing as in the proof of Proposition 4.4, using this time Hypothesis H(j) (5), we can
show that

ĥ = ĝ0K(y),

with ĝ0 ∈ L∞(Z), η1(z) ≤ ĝ0(z) ≤ η2(z) a.e. on Z. Moreover, acting on (78) with
yn − y ∈ W1,p

n (Z), passing to the limit as n → +∞, we obtain

lim
n→+∞〈A(yn), yn − y〉 = 0 .

Because A is an (S)+-operator (see Proposition 4.3), it follows that

yn → y in W1,p
n (Z), ‖y‖ = 1 .

So, if we pass to the limit as n → +∞ in (78), we have

A(y) = (t̂g0 + (1 − t)h)K(y) = ξ̂0K(y), (79)
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with ξ̂0 ∈ L∞(Z), η1(z) ≤ ξ̂0(z) ≤ η2(z) a.e. on Z. Acting on (79) with y ∈ W1,p
n (Z),

we obtain

‖Dy‖p
p =

∫

Z
ξ̂0|y|pdz ≤ 0 (80)

so, since ‖y‖ = 1

y ≡ c ∈ IR \ {∅} .

Then, bearing in mind that ξ̂ ≤ 0, from (80) we deduce that

0 = |c|p
∫

Z
ξ̂0(z)dz < 0,

a contradiction. This proves the Claim.
From the Claim and the homotopy invariance property of the degree map d̂ we

have

d̂
(
A − N, Bρ , 0

) = d(S)+
(
A − hK, Bρ , 0

)
for all 0 < ρ ≤ ρ0 . (81)

But since h ≤ η1, from Drabek [12], we know that

d(S)+
(
A − hK, Bρ , 0

) = 1

and so

d̂
(
A − N, Bρ , 0

) = 1 for all 0 < ρ ≤ ρ0 . ��
Now we are ready for the multiplicity result concerning problem (1).

Theorem 4.1 If hypotheses H(j) hold, then there exist at least two solutions for problem
(1), x0 ∈ int C+ and x̂ ∈ C1

n(Z), x̂ �= 0.

Proof The first solution x0 ∈ int C+ was obtained in Proposition 3.2 and it is a local
minimizer of ϕ. We may assume that x0 is an isolated local minimizer of ϕ, or otherwise
we have a whole sequence of solutions of (1). Therefore, we can find r0 > 0 such that

ϕ(x0) < ϕ(y) and 0 /∈ ∂ϕ(y) for all y ∈ Br0(x0), y �= x0 . (82)

Claim For every 0 < r < r0, we have

inf
[
ϕ(x) : x ∈ Br0(x0) \ Br(x0)

]
> ϕ(x0) . (83)

Suppose that we can find 0 < r < r0 such that (83) fails. Therefore, we can find
{xn}n≥1 ⊆ Br0(x0) \ Br(x0) such that ϕ(xn) ↓ ϕ(x0) as n → +∞. We may assume that

xn ⇀ x in W1,p
n (Z), xn → x in Lp(Z), xn(z) → x(z) a.e. on Z

and

|xn(z)| ≤ k(z) a.e. on Z, for all n ≥ 1, with k ∈ Lp(Z)+ .

We have x ∈ Br0(x0). Since ϕ is weakly lower semicontinous

ϕ(x) ≤ lim ϕ(xn) = ϕ(x0),
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hence, because of (82), we infer that x = x0. The nonsmooth mean value theorem (see
Clarke [11], p. 41), gives λn ∈ (0, 1) such that

ϕ(xn)− ϕ(
xn + x0

2
) =

〈
u∗

n,
xn − x0

2

〉
(84)

with u∗
n ∈ ∂ϕ (

λnxn + (1 − λn)
xn+x0

2

)
. We know that

u∗
n = A

(
λnxn + (1 − λn)

xn + x0

2

)
− un

with un ∈ N
(
λnxn + (1 − λn)

xn+x0
2

)
. So, if we take into account that N is of class (P)

and pass to the limit as n → +∞ in (84), then we obtain

lim sup
n→+∞

〈
A

(
λnxn + (1 − λn)

xn + x0

2

)
,

xn − x0

2

〉
≤ 0 ,

that is,

lim sup
n→+∞

〈
A

(
λnxn + (1 − λn)

xn + x0

2

)
, λnxn + (1 − λn)

xn + x0

2
− x0

〉
≤ 0 . (85)

Since A is an (S)+-operator (see Proposition 4.1), from (85) we infer that

λnxn + (1 − λn)
xn + x0

2
→ x0 in W1,p

n (Z) .

However, note that
∥∥∥∥λnxn + (1 − λn)

xn + x0

2
− x0

∥∥∥∥ = (1 + λn)

∥∥∥∥
xn − x0

2

∥∥∥∥ ≥ r
2
> 0 ,

a contradiction. So (83) holds. This means that

µ = inf
[
ϕ(x) : x ∈ Br0(x0) \ B r0

2
(x0)

]
− ϕ(x0) > 0 . (86)

We set

V = {x ∈ B r0
2
(x0) : ϕ(x)− ϕ(x0) < µ} .

Evidently this is an open bounded neighborhood of x0. We can apply Proposition 5
of Aizicovici et al. [2] with the following data:

x0, U = Br0(x0),ϕ|Br0 (x0) − ϕ(x0), µ as in (86),

r ∈
(

0,
r0

2

)
such that Br(x0) ⊆ V and

0 < λ < inf
[
ϕ(x) : x ∈ Br0(x0) \ Br(x0)

] − ϕ(x0) .

Then we have

d̂ (A − N, V, 0) = 1 .

From the excision property, we have

d̂ (A − N, V, 0) = d̂ (A − N, Br(x0), 0)
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and finally

d̂ (A − N, Br(x0), 0) = 1 . (87)

From Propositions 4.4 and 4.5 we know that we can find 0 < ρ0 < R0 such that

x0 ∈ BR0 \ Bρ0 ,

d̂ (A − N, BR, 0) = 0 for all R ≥ R0 (88)

and

d̂
(
A − N, Bρ , 0

) = 1 for all 0 < ρ ≤ ρ0 . (89)

We can always assume that Br(x0) ⊆ BR0 and Br(x0)∩Bρ = ∅. Then from the domain
additivity property, we have for 0 < ρ ≤ ρ0 < R0 ≤ R:

d̂ (A − N, BR, 0) = d̂
(
A − N, Bρ , 0

)

+ d̂ (A − N, Br(x0), 0)+ d̂
(

A − N, BR \ (
Br(x0) ∪ Bρ

)
, 0

)
,

so, bearing in mind (87), (88) and (89), we deduce

d̂
(

A − N, BR \ (
Br(x0) ∪ Bρ

)
, 0

)
= −2 .

From the solution property, it follows that there exists x̂ ∈ BR \ (
Br(x0) ∪ Bρ

)
(hence

x̂ �= x0, x̂ �= 0) such that

A(̂x) = û with û ∈ N(̂x),

so x̂ solves problem (1) and from the nonlinear regularity theory, we have x̂ ∈ C1
n(Z),

x̂ �= 0. ��
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